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This paper proposes theoretical and numerical approaches to scrutinize the free vibration
of orthogonal stiffened cylindrical shells. According to Kárman-Donnell shell theory, the to-
tal energy of the stiffened cylindrical shells is derived. Based on the principle of minimum
potential energy, the eigenfunction related to the frequency is established and solved by de-
veloping a MATLAB program. Analytical solutions of the natural frequency for free vibraion
of the stiffened cylindrical shells are calculated and are verified against the finite element
results from ABAQUS software. On account of the observations from the parametric study,
an optimization scheme of the stiffeners is proposed.
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1. Introduction

With the development of industry and economy, cylindrical shell structures are widely used in
many fields including civil engineering, marine industry and aerospace engineering. In practical
engineering, cylindrical shell structures are usually subjected to various loads. Because of the
importance of cylindrical shells in engineering, theoretical and experimental studies have been
conducted.
Li et al. (2013) detailed calculating formulas about deformation and stress of large diameter

cylindrical shells with the cross-section obtained by programming, which can be used in storage
tank design such as petroleum reserve. Xue et al. (2015) proposed a first order shear deforma-
tion theory for cylindrical sandwich pipes subjected to undersea water pressure. Schneider and
Zahlten (2004) conducted physically and geometrically nonlinear analyses of the load-bearing
capacity of slender wind-loaded cylindrical shells and drew some conclusions for the design prac-
tice from nonlinear parameter studies. Based on Kárman-Donnell’s theory, Xue (2012, 2013) and
Xue et al. (2013) presented a unique approach to analyze the buckling of an infinitely long cylin-
drical shell and the post-buckling of a pipe subjected to external pressure. As to the structural
failure, such as buckling and postbuckling, stiffened cylindrical shells were examined by Bisagni
and Cordisco (2006) using an experimental approach, by Wang et al. (2007) to explore the
characteristics and regularity of ring-stiffened cylindrical shells under different cross uniform
external pressures and by Sadeghifar et al. (2010) to employ a genetic algorithm and energy
discrete calculation method for axial buckling optimization of orthogonally stiffened cylindrical
shells. The influence of initial geometric imperfections in the shapes of eigenmodes and periodic
modes on the load-carrying capacity of a steel stringer-stiffened cylindrical shell subject to axial
compression was studied by Sadovský et al. (2009).
Vibration characteristics of shell structures have been one of the research focuses of scholars

worldwide. Mohamad (2002) and Mohamad et al. (2010) summarized the research on dynamic
studies of the shell structures. Breslavskii et al. (2011) proposed a method to calculate nonlinear
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vibrations of shallow shells in fluid, then expanded the nonlinear vibrations of a shell in terms
of the normal modes of the system. Swamy Naidu and Sinha (2007) investigated nonlinear free
vibration behavior of laminated composite shells subjected to hydrothermal environments using
the finite element method and carried out a parametric study of variable curvature ratios and
side to thickness ratios of composite cylindrical shells. Lee and Kwak (2015) used the Rayleigh-
-Ritz method to derive a dynamic model for free vibration analysis of a circular cylindrical shell
and established explicit expressions for the mass and stiffness matrices.

Some studies are presently available for vibration of stiffened cylindrical shells. The ana-
lysis of free vibration of rotating functionally graded carbon nanotube reinforced composite
cylindrical shells with arbitrary boundary conditions was inspected by Qin et al. (2019). Both
Hemmatnezhad et al. (2015) and Jafari and Bagheri (2006) investigated in detail the free vibra-
tion problem of stiffened composite cylindrical shells from three aspects of theory, experiment
and numerical simulation. Besides, Li et al. (2015) researched the free vibration response of
joined and orthogonally stiffened cylindrical-spherical shells and explored the effects of the cru-
cial factor by the finite element software ANSYS. Rout et al. (2017) analyzed free vibration
of delaminated composite stiffened shallow shells employing the finite element method. Based
on the Flügge thin shell theory and Hamilton principle, Zhou (2012) addressed the fluid-solid
coupling vibration of a circumferential stiffened cylindrical shell filled with a liquid. In addition,
the free vibration of circumferential stiffened cylindrical shells was also studied by means of wave
propagation, see Gan et al. (2009), by the Galerkin method, see Ahmadi and Foroutan (2019). As
to the nonlinear vibration of the stiffened cylindrical shells, Torkamani et al. (2009) built a free
vibration model of a longitudinal and transverse ribbed cylindrical shell based on the nonlinear
stress-strain relationship in the Kárman-Donnell shell theory. The natural frequency of the shell
was solved using the principle of virtual work. Using von Kárman nonlinear thin shell theory
and first-order shear theory, Sheng and Wang (2018) analyzed dynamic stability and nonlinear
vibration of functionally graded material stiffened cylindrical shells by the uniform distribution
of the stiffness method.

The above studies on dynamic responses of the stiffened cylindrical shells are accomplished
by analyzing the deformation kinematics of the stiffeners and the cylindrical shells separately.
Due to the undetermined contact forces between the stiffeners and the cylindrical shell, it is
different to simultaneously solve the differential equations of equilibrium of the stiffeners and the
cylindrical shell, especially when the number of stiffeners is large. In the present study, the energy
method is proposed to analyze the free vibration of the reinforced cylindrical shells with which
the coupled differential equations of equilibrium of the stiffeners and the cylindrical shell are
unnecessary to solve. Strain and kinetic energy of the cylindrical shell and stiffeners undergoing
free vibration are derived based on the Kárman-Donnell shell theory and are calculated by
developing a MATLAB program. The finite element models for cylindrical shells with stiffeners in
circumferential and longitudinal directions are established in ABAQUS software. The numerical
solutions are compared with the theoretical solutions to validate the feasibility of the energy
method. With the established energy method, the effects of number of the stiffeners, geometric
parameters and material properties of stiffeners on the free vibration of the stiffened cylindrical
shells are discussed, and the optimization of the reinforcement scheme is proposed.

2. Fundamental formulas

Figure 1 illustrates a simply supported laminated cylindrical shell with orthogonal stiffeners
in the circumferential and axial directions. The stiffened cylindrical shell is decomposed into
three components: a laminated cylindrical shell, circumferential ribs and longitudinal ribs. The
cylindrical shell has a length of L, a radius of R and a thickness of h. The circumferential ribs



Free vibration of composite cylindrical shells... 241

are circular rings of width bc, thickness hc and radius R − hc/2, and the longitudinal ribs are
rectangular bars with a width of bl, a thickness of hl and a length of L. A coordinate system is
located at the middle surface of the laminated cylindrical shell where x, y and z represent the
axial, circumferential and radial directions, respectively.

Fig. 1. Coordinate system and an orthogonally stiffened cylindrical shell

2.1. Deformation kinematics

Define u, v and w as the components of the displacement of the stiffened laminated cylindrical
shell in the axial, circumferential and radial directions. According to Kárman-Donnell’s shell
theory, the components of strain εij and the changes of curvature κij of the stiffened shell are
expressed as

εx = u,x εy = v,y +
w

R
γxy = u,y + v,x (2.1)

and

κx = −w,xx κy = −w,yy κxy = −w,xy (2.2)

Xue et al. (2013) have shown that for a non-shallow cylindrical shell with the initial curvature
of 1/R, the deflection in the radial direction w will cause an extra change in curvature κy by
an amount of −w/R2. Thus, the total change of curvature in the circumferential direction is
modified to

κ′y = −w,yy −
w

R2
(2.3)

It is often assumed in theories of beams, plates and shells that the components of strain and
the changes of curvature are invariable along the thickness of the structures, and the deformation
is characterized by the component of displacement of the neutral surface. Suppose that the i-th
circumferential rib is located at x = xi on the cylindrical shell and the j-th longitudinal rib is
at y = yj on the cylindrical shell. Thus, due to the continuity conditions between the laminated
cylindrical shell and the ribs, the components of displacement of the circumferential ribs and of
the longitudinal ribs are the same as those of the cylindrical shell at the corresponding places,
i.e.

uci = u
∣

∣

x=xi
vci = v

∣

∣

x=xi
wci = w

∣

∣

x=xi
for i = 1, . . . , r

ulj = u
∣

∣

y=yj
vlj = v

∣

∣

y=yj
wlj = w

∣

∣

y=yj
for j = 1, . . . , s

(2.4)
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where uci , v
c
i and w

c
i are the components of displacement of the i-th circumferential rib, u

l
j , v
l
j

and wlj are the components of displacement of the j-th longitudinal rib, r is the number of
circumferential rib and s the number of longitudinal rib.

Similarly, the components of strain and the changes of curvature in the circumferential and
longitudinal ribs are the same as those of the cylindrical shell, i.e.:
— for circumferential ribs

εci = εy
∣

∣

x=xi
= vci ,y +

1

R
wci κci = κ

′

y

∣

∣

x=xi
= −wci ,yy −

1

R2
wci (2.5)

— for longitudinal ribs

εlj = εx
∣

∣

y=yj
= ulj ,x κlj = κx

∣

∣

y=yj
= −wlj ,xx (2.6)

2.2. Constitutive relations

As indicated in Section 2, the stiffened cylindrical shell is composed of the cylindrical shell,
circumferential ribs and longitudinal ribs. For a general purpose, the cylindrical shell is consid-
ered to be made of composite laminates, while the circumferential and the longitudinal ribs are
manufactured of isotropic materials.

2.2.1. Laminated cylindrical shell

The material properties of the composite ply for the cylindrical shell are E11, E22, µ12, µ21,
G12 which represent Young’s modulus in the first and second principal direction, Poisson’s ratio
in the corresponding direction and the shear modulus of the composite ply, respectively. Suppose
that the angle of the orientation of the k-th ply with respect to the horizontal axis in the global
coordinate systems for the cylindrical shell is θ. The stiffness matrix Qk of the k-th composite
ply in the global coordinate system of the cylindrical shell are formulated as follows

Qk =
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(2.7)

where c = cos θ, s = sin θ and

Q11 =
E11

1− µ
(1)
12 µ
(1)
21

Q22 =
E22

1− µ
(1)
12 µ
(1)
21

Q12 =
µ21E22

1− µ
(1)
12 µ
(1)
21

=
µ12E11

1− µ
(1)
12 µ
(1)
21

Q66 = G12

(2.8)

The matrix of tensile stiffness A, coupling stiffness B and bending stiffness D for the cylin-
drical shell are computed by

Apq =

h/2
∫

−h/2

(Qpq)k dz Bpq =

h/2
∫

−h/2

(Qpq)kz dz Dpq =

h/2
∫

−h/2

(Qpq)kz
2 dz (2.9)

where k is the layer number of the composite ply of the cylindrical shell. According to me-
chanics of composite materials, the constitutive relationships for laminated cylindrical shells are
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expressed as
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(2.10)

where Nij and Mij are the membrane forces and bending moments of the laminated cylindrical
shell, respectively.

2.2.2. Stiffening ribs

When the ribs vibrate with the shell, the bending stiffness EI of an independent rib is no
longer applicable in this case. As the stiffening ribs are mounted on the cylindrical shell, there
exists an interaction between the cylindrical shell and the ribs which cause extra stiffness of the
cylindrical shell and the ribs. To avoid solving the complex interaction between the cylindrical
shell, portions of the cylindrical shell that are connected with the ribs are taken out and are
added to the ribs to form integrated stiffeners. The integrated stiffeners in the longitudinal and
circumferential direction have geometry sizes of L× bc × (hc + h) and 2πR× bl × (hl + h).

Fig. 2. Model of coupling vibration between the stiffeners and laminated cylindrical shell

Figure 2 illustrates geometry of the integrated stiffeners as well as their neutral axis. Ac-
cording to the mechanics of composite materials, the membrane stiffness A, the tension-bending
coupling stiffness B and the bending stiffness D of the integrated stiffeners are calculated as
follows

A
(c)
11 =

zsh1
∫

zsh2

(Qpq)k dz +

zsh2
∫

zhc

Q
(c)
11 dz A

(l)
11 =

zsh1
∫

zsh2

(Qpq)k dz +

zsh2
∫

zhl

Q
(l)
11 dz

B
(c)
11 =

zsh1
∫

zsh2

(Qpq)kz dz +

zsh2
∫

zhc

Q
(c)
11 z dz B

(l)
11 =

zsh1
∫

zsh2

(Qpq)kz dz +

zsh2
∫

zhl

Q
(l)
11z dz

D
(c)
11 =

zsh1
∫

zsh2

(Qpq)kz
2 dz +

zsh2
∫

zhc

Q
(c)
11 z
2 dz D

(l)
11 =

zsh1
∫

zsh2

(Qpq)kz
2 dz +

zsh2
∫

zhl

Q
(l)
11z
2 dz

(2.11)

where zsh1 = (h + hc(hl))/2, zsh2 = (−h + hc(hl))/2, zhc = −(h + hc)/2, zhl = −(h + hl)/2,
Q11 and Q22 represent the reduced stiffness coefficient of the cylindrical shell in the longitu-
dinal and circumferential direction, respectively, the superscripts (c) and (l) of A, B and D
refer to the integrated stiffeners in the circumferential and longitudinal direction, respectively,

Q
(c)
11 and Q

(l)
11 represent the reduced stiffness coefficient of the circumferential and longitudinal

ribs, respectively, and are calculated as follows

Q
(c)
11 =

Ec
1− µ2c

Q
(l)
11 =

El
1− µ2l

(2.12)
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where Ec, El and µx, µy represent the elastic modulus and Poisson’s ratio of the circumferential
and longitudinal ribs, respectively.
The constitutive relationships for the circumferential stiffeners and longitudinal stiffeners are

simplified as

[

Nc
Mc

]

=

[

A
(c)
11 B

(c)
11

B
(c)
11 D

(c)
11

] [

εc
κc

] [

Nl
Ml

]

=

[

A
(l)
11 B

(l)
11

B
(l)
11 D

(l)
11

] [

εl
κl

]

(2.13)

where Nc, Nl and Mc, Ml are the membrane forces and bending moments of the circumferential
and longitudinal stiffeners, respectively.

3. Free vibration of stiffened cylindrical shells

During vibration of the stiffened cylindrical shell, the energy dissipates in the form of strain
energy and kinetic energy. The strain energy U and kinetic energy T of the stiffened cylin-
drical shell are summation of the corresponding energy dissipated by the cylindrical shell, the
circumferential and longitudinal stiffeners as follows

U = Ushel + Uc + Ul T = Tshel + Tc + Tl (3.1)

where Ushel, Uc and Ul is the strain energy dissipated by the cylindrical shell, the circumferential
and longitudinal stiffeners, respectively. Tshel, Tc and Tl is the kinetic energy dissipated by the
cylindrical shell, the circumferential and longitudinal stiffeners, respectively. They are given by

Ushell =
1

2

∫∫

(Mxκx +Myκy + 2Mxyκxy) dx dy +
1

2

∫∫

(Nxεx +Nyεy + 2Nxyεxy) dx dy

=
1

2

L
∫

0

2πR
∫

0

(D11κxκx + 2D12κxκy +D22κyκy + 4D66κxyκxy

+A11εxεx + 2A12εxεy +A22εyεy +A66γxyγxy) dx dy

Uc =
ni
∑

i=0

1

2
bc

2πR
∫

0

(A
(c)
11 ε
c
iε
c
i + 2B

(c)
11 ε
c
iκ
c
i +D

(c)
11 κ
c
iκ
c
i )
∣

∣

∣

x=ci
dy

Ul =

nj
∑

j=0

1

2
bl

L
∫

0

(A
(l)
11ε
l
jε
l
j + 2B

(l)
11 ε
l
jκ
l
j +D

(l)
11κ
l
jκ
l
j)
∣

∣

∣

y=dj
dx

(3.2)

and

Tshell =
1

2
ρh

L
∫

0

2πR
∫

0

[(u̇)2 + (v̇)2 + (ẇ)2] dx dy

Tc =
ni
∑

i=0

1

2
ρcbchc

2πR
∫

0

[

(u̇ci )
2 + (v̇ci )

2 + (ẇci )
2
]

x=ci
dy

Tl =

nj
∑

j=0

1

2
ρlblhl

L
∫

0

[

(u̇lj)
2 + (v̇lj)

2 + (ẇlj)
2
]

y=dj
dx

(3.3)

where ni and nj represent the number of circumferential and longitudinal stiffeners, ρ, ρc and ρl
is the density of the cylindrical shell, circumferential and longitudinal stiffeners, respectively.
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The stiffened cylindrical shell is simply supported at its two ends. The boundary conditions
of the stiffened cylindrical shell at both ends are

v
∣

∣

x=0
= 0 w

∣

∣

x=0
= 0 Nx

∣

∣

x=0
= 0 Mx

∣

∣

x=0
= 0

v
∣

∣

x=L
= 0 w

∣

∣

x=L
= 0 Nx

∣

∣

x=L
= 0 Mx

∣

∣

x=L
= 0

(3.4)

In order to satisfy the boundary conditions, Eqs. (3.3), the displacement functions of the
laminated cylindrical shell are assumed as

u = umn sin(ωmnt) cos
mπx

L
sin
ny

R
v = vmn sin(ωmnt) sin

mπx

L
cos
ny

R

w = wmn sin(ωmnt) sin
mπx

L
sin
ny

R

(3.5)

where umn, vmn and wmn are undetermined coefficients, ωmn is the natural angular frequency
of the stiffened cylindrical shell, m and n represent the number of half waves in the axial and
circumferential directions respectively, and t is time. Due to continuity conditions (2.4), it is
assumed that the form of the displacement functions of the circumferential and longitudinal ribs
is consistent with that of the cylindrical shell, i.e. uci , v

c
i , w

c
i , u
l
j , v
l
j and w

l
j .

The cylindrical shell analyzed in this paper is symmetrically orthogonally laminated. Thus,
the coupling effects of tension-shearing, tension-bending and bending-twisting in the cylindrical
shell disappear. Substitute Eqs. (2.1)-(2.3) and (2.5)-(2.13) into Eqs. (3.2) and Eqs. (2.4) and
(3.5) into Eqs. (3.3). By putting Bij = 0, the strain energy and the kinetic energy of the stiffened
composite cylindrical shell is derived

U =
πRL

4

[

D11w
2
mn

(mπ

L

)4
+ 2D12w

2
mn

(mπ

L

)2( n2

R2
−

1

R2

)

+D22w
2
mn

( n2

R2
−

1

R2

)2

+ 2D66w
2
mn

(mπ

L

)2( n

R

)2
+A11u

2
mn

(mπ

L

)2
+ 2A12umn

mπ

L

(nvmn
R
−

wmn
R

)

+A22
(

−

nvmn
R
+
wmn
R

)2
+A66

(numn
R
+
mπvmn
L

)2
]

+
ni
∑

i=0

bcπR

2

[

A
(c)
11

(

−

nvmn
R
+
wmn
R

)2
+D

(c)
11 w

2
mn

( n

R

)4

+ 2B
(c)
11

(

−

nvmn
R
+
wmn
R

)

wmn
( n

R

)2
]

sin2
mπci
L

+

nj
∑

j=0

blL

4

[

A
(l)
11u
2
mn

(mπ

L

)2
− 2B

(l)
11umnwmn

(mπ

L

)3
+D

(l)
11w
2
mn

(mπ

L

)4
]

sin2
ndj
R

(3.6)

and

T = πRLρhω2mn(u
2
mn + v

2
mn + w

2
mn)
cos2(ωmnt)

4

+
ni
∑

i=0

ρcbchcπRω
2
mn

(

u2mn cos
2 mπci
L
+ v2mn sin

2 mπci
L
+ w2mn sin

2 mπci
L

)cos2(ωmnt)

2

+

nj
∑

j=0

ρlblhlLω
2
mn

(

u2mn sin
2 ndj
R
+ v2mn cos

2 ndj
R
+ w2mn sin

2 ndj
R

)cos2(ωmnt)

4

(3.7)

The total potential energy Π of the stiffened cylindrical shell during free vibration is the
superposition of the strain and kinetic energy, i.e.

Π = U + T (3.8)
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According to the principle of virtual work, the actual displacements u, v and w of the stiffened
cylindrical shell during free vibration must be such that the first variation of the total potential
energy per unit time is stationary. In particular, it must be a minimum under the condition of
equilibrium. This condition is satisfied by taking the first derivative of the total potential energy
per unit time Π̇ with respect to umn, vmn, wmn, and set these values to zero, i.e.

∂Π̇

∂umn
= 0

∂Π̇

∂vmn
= 0

∂Π̇

∂wmn
= 0 (3.9)

From Eq. (3.9), a set of homogeneous linear equations about umn, vmn and wmn are obtained
as follows






L11 L12 L13
L21 L22 L23
L31 L32 L33













umn
vmn
wmn






= 0 (3.10)

The necessity for nontrivial solutions of Eq. (3.10) requires the determinant of the coefficient
matrix L(ωmn) to be zero

∣

∣

∣

∣

∣

∣

∣

L11 L12 L13
L21 L22 L23
L31 L32 L33

∣

∣

∣

∣

∣

∣

∣

= 0 (3.11)

where the coefficient Lij is not only a function of ωmn, but also in relation to the material
properties and geometry parameters of the laminated cylindrical shell as well as the stiffen-
ers. From Eq. (3.11), the natural frequency of the stiffened composite cylindrical shell is ob-
tained through the MATLAB program and it can be converted into the natural frequency fe by
ωmn = 2πfe.

4. Validation

In this Section, a simply supported cylindrical shell with 10 stiffeners in the circumferential and
longitudinal direction is studied as an example to verify the validation of the energy method
in Section 4. The laminated cylindrical shell is made of graphite/epoxy composite plies while
the stiffeners are made of Q235 steel. The shell has a stacking sequence of [0/90/0]7 with the
thickness of 1mm for each single composite ply. The geometric and material properties are given
in Table 1. The natural frequency is calculated through the customized MATLAB program based
on the energy method.

Table 1. Material properties and geometric parameters of stiffened cylindrical shell

Shell
Stiffeners

Circumferential Longitudinal

E1 = 130GPa, E2 = 9.5GPa, Ec = 206GPa, El = 206GPa,
G12 = 6GPa, µ12 = 0.3, ρc = 7900 kg/m

3, ρl = 7900 kg/m
3,

L = 1.94m, R = 0.35m, h = 0.021m, bc = 0.005m, bl = 0.005m,
t = 0.001m, ρ = 1210 kg/m3 hc = 0.02m hl = 0.02m

Numerical simulation of free vibration of the stiffened cylindrical shell is conducted by
ABAQUS software. The geometric and material parameters in theoretical analysis are also
used in the finite element model to ensure the comparability of analytical and numerical so-
lutions. As shown in Fig. 3, the stiffened cylindrical shell is modeled by three parts: the shell,
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circumferential and longitudinal stiffeners. Each part is discretized into a mesh with 4-node
general-purpose shell elements, characterized as reduced integration with hourglass control and
finite membrane strains. For the shell, the mesh consists of 60 elements around the circumference
and 53 parts along the length; for the stiffeners, the element size is chosen as 0.5mm in both
the circumferential and radial direction. The three parts are assembled by tied constraints to
form a monolithic stiffened cylindrical shell. At the two ends of the shell, the degrees of freedom
in the ircumferential and radial direction at each point are constrained to provide the simply
supported boundary condition. The frequency step is built to achieve the free vibration analysis
and obtain the eigenvalues fFEM for comparison with the energy method.

Fig. 3. Finite element model of the stiffened cylindrical shell

As illustrated in Fig. 4, the combination of various half-wave numbers in the circumferential
and longitudinal directions forms different vibration modes of the stiffened cylindrical shell,
which is consistent with the mode function assumed as in Eq. (3.5). The comparisons between
analytical and numerical solutions are listed in Table 2. It can be seen that the solutions from
the energy method fe are in good agreement with those from the finite element analysis fFEM ,
which indicates that the algorithm based on the energy method is accurate for predicting the
free vibration characteristics of the stiffened cylindrical shell.

Fig. 4. Vibration modes of the finite element model of the stiffened cylindrical shell: (a) first order
vibration mode (m = 1, n = 2), (b) second order vibration mode (m = 1, n = 1), (c) third order

vibration mode (m = 1, n = 3), (d) fourth order vibration mode (m = 2, n = 2)
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Table 2. Comparisons of the first to sixth order natural frequencies of stiffened cylindrical shells

m n fe [Hz] fFEM [Hz] Error [%]

1 2 234.88 249.58 6.26

1 1 322.43 341.85 6.02

1 3 432.34 417.15 3.51

2 2 442.44 437.19 1.16

2 3 512.45 491.62 4.06

3 3 636.54 619.48 2.68

5. Parameter analysis and stiffener optimization

The validation of theoretical solution as well as finite element model has been demonstrated in
the foregoing Section by comparing both with each other. In this Section, a parametric study
is conducted using the established energy method and finite element model to illustrate the
influence of different numbers, geometric parameters and material properties of the stiffeners on
the free vibration of the stiffened cylindrical shell.

5.1. The influence of numbers of stiffeners

Figure 5 illustrates the influence of numbers of stiffeners on the first order natural fre-
quency f1 of the stiffened cylindrical shell reinforced in only the circumferential or longitudinal
direction. Cases in which ni = nj = 0, 10, 20, 30, 40 and 50 are investigated. In addition,

Fig. 5. Curves of the first order natural frequency of the stiffened cylindrical shell varying with the
number of stiffeners: (a) circumferential stiffeners, (b) longitudinal stiffeners

variations of frequencies with respect to different geometric parameters but the same radius-
-to-thickness ratio R/h and length-to-radius ratio L/R are observed by changing the radius R,
length L and thickness h of the shell. It can be seen from the curves that in the case of different
geometric parameters of the shell, as the number of circumferential stiffeners ni rises, the first
order natural frequency f1 always enlarges. However, the frequencies decrease with an increase
in the number of longitudinal stiffeners, which results from the difference in the contribution of
longitudinal stiffeners to the strain and kinetic energy of the structure. For the free vibration
of the shell, circumferential bending is the dominant deformation, but the effect of longitudinal
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stiffeners on the circumferential bending is negligible. Therefore, the kinetic energy of the struc-
ture increases obviously while the variation of strain energy can be ignored, which results in the
reduction of the natural frequency.

5.2. The influence of geometric parameters of stiffeners

The influence of geometric parameters of stiffeners on the free vibration performance is shown
in Fig. 6. Analyses are conducted for the cases of bc = bl = 0.005m, 0.01m, 0.015m, 0.02m,
0.025m and hc = hl = 0.02m, 0.04m, 0.06m, 0.08m, 0.1m, in which the area increments of the
stiffeners in the parameter analysis are controlled the same.

As shown in Fig. 6, the first order natural frequency f1 increases with the increment of
geometric parameters of the circumferential stiffeners, including the width bc and height hc. In
addition, comparing the curves of the circumferential stiffeners in Figs. 6a and 6b, it can be
found that when the area increment is given, the increasing of the height of the stiffener has a
greater impact on the frequency than the width. This is because D11c has a cubic term of hc
in the calculation of the strain energy, whereas bc only exists in the form of a first term. Thus,
hc plays a major role in the energy conversion process, which indicates that the free vibration of
the stiffened shell is behavior dominated by circumferential bending. However, it can be found
in Fig. 6 that the frequency f1 decreases with an increase in the width bl or height hl, which can
also be attributed to the the difference between the strain energy and the kinetic energy caused
by the longitudinal stiffeners.

Fig. 6. Curves of the first order natural frequency of stiffened cylindrical shell varying with geometric
parameters of stiffeners: (a) width, (b) height

5.3. The influence of material properties of stiffeners

Figure 7 is a schematic diagram of the influence of Young’s modulus Er and Es on the first
order natural frequency f1 for materials with the same physical and geometric properties but
different Ec and El. As illustrated in Fig. 7a, although the frequency f1 increases obviously with
the increase in Young’s modulus Ec, the frequency f1 is almost insusceptible to the variation
of El. The reason for this phenomenon is that the strain energy is directly related to the elastic
modulus, but the increase in longitudinal stiffness of the structure caused by the increase of El
has negligible influence on the free vibration of the cylindrical shell dominated by bending in
the circumferential direction.
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Fig. 7. Curves of the first order natural frequency of stiffened cylindrical shell varying with material
properties of stiffeners: (a) elastic modulus, (b) density

The variation of the first order natural frequency f1 with the density ρc and ρl of the
stiffeners is plotted in Fig. 7b. As shown in Fig. 7b, when the density increases from 1000 kg/m3

to 9000 kg/m3, the frequency of the shell structure shows a decline in both circumferential or
longitudinal reinforcement schemes. Comparing the slopes of the two curves, it can be found
that the change of the elastic modulus has a slightly greater effect on the natural frequency of
the circumferential reinforced cylindrical shell than that stiffened in the longitudinal direction.

5.4. Optimization of the reinforcement scheme

According to the above analysis, it can be concluded that for the free vibration of the stiff-
ened cylindrical shell, the circumferential stiffener plays a major role in the influence on the
natural frequency of the structure, whereas the effect of the longitudinal stiffeners on the natu-
ral frequency of the structure is negligible. Therefore, during the design of a stiffened cylindrical
shell, the circumferential stiffeners should take precedence over longitudinal stiffeners to improve
vibration characteristics of the structure. In addition, in the determination of the geometric pa-
rameters of the stiffeners, priority should be given to the increase in the height of circumferential
stiffeners for a higher efficiency in improving the frequency of the structure. For the material
properties of stiffeners, a high elastic modulus and low density are of great significance to the
free vibration of the stiffened cylindrical shell.

6. Conclusion

In the present study, the problems of free vibration of the stiffened cylindrical shell was investi-
gated by means of theoretical analysis and numerical simulation. Based on the Kárman-Donnell’s
shell theory and the principle of minimum potential energy, the strain and kinetic energy of the
shell and stiffeners were calculated and the matrix L(ωmn) relation to the frequency was es-
tablished. Furthermore, finite element models were built to verify the validation of analytical
solutions, and a good agreement was found in the comparison between the theoretical and
numerical solutions. To explore the stiffening optimization of the cylindrical shell, parametric
studies were performed to ascertain the influences of numbers, geometric parameters and ma-
terial properties of the stiffeners on the natural frequency of the stiffened cylindrical shell. The
following conclusions can be drawn:
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• The free vibration mode of the stiffened cylindrical shell is still dominated by the shell,
showing a half-wave distribution in the circumferential and longitudinal directions. More-
over, as the vibration modal order increases, the half-wave number in the circumferential
and longitudinal directions gradually increases.

• The free vibration of the stiffened cylindrical shell is dominated by the circumferential
bending behavior. The installation of circumferential stiffeners has a significant effect on
the frequency increase while the reinforcement in the longitudinal direction results in the
reduction of the frequency. It is found that when the number of the stiffeners exceeds 10,
the frequency of the cylindrical shell increases very slowly.

• The geometric parameters of the stiffeners play an important role on the free vibration
of the stiffened cylindrical shell. The variation trend of the frequency of the stiffened
cylindrical shell caused by a change in width or height of the stiffeners is consistent with
the trend resulted from the variation of number of stiffeners. Furthermore, the change of
height has a more significant influence on the frequency than the width.

• An increase in the elastic modulus of stiffeners leads to a rise of strain energy of the
stiffened cylindrical shell, which causes an increase in the frequency. In contrast, an increase
in density results in a rise of kinetic energy of the structure, which causes reduction of
the frequency. Following this observation, it is better to choose rolled steels with a high
elastic modulus as the stiffeners, for instance, bearing steel with high Chromium, since the
density of various steels changes quite little.
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